
CS267 L3 Programming Models.1

CS 267: Applications of Parallel Computers

Lecture 3:
Introduction to Parallel Architectures

and Programming Models

David H. Bailey

based on notes by J. Demmel and D. Culler

http://www.nersc.gov/~dhbailey/cs267

CS267 L3 Programming Models.2

Recap of Last Lecture

° The actual performance of a simple program can
depend in complicated ways on the architecture.

° Slight changes in the program may change the
performance significantly.

° For best performance, we must take the architecture
into account, even on single processor systems.

° Since performance is so complicated, we need
simple models to help us design efficient
algorithms.

° We illustrated with a common technique for
improving cache performance, called blocking,
applied to matrix multiplication.

CS267 L3 Programming Models.3

Outline

° Parallel machines and programming models

° Steps in writing a parallel program

° Cost modeling and performance trade-offs

CS267 L3 Programming Models.4

Parallel
Machines and
Programming

Models

CS267 L3 Programming Models.5

A generic parallel architecture

P P P P

Interconnection Network

M M MM

° Where is the memory physically located?

Memory

CS267 L3 Programming Models.6

Parallel Programming Models

° Control
• How is parallelism created?

• What orderings exist between operations?

• How do different threads of control synchronize?

° Data
• What data is private vs. shared?

• How is logically shared data accessed or communicated?

° Operations
• What are the atomic operations?

° Cost
• How do we account for the cost of each of the above?

CS267 L3 Programming Models.7

Trivial Example

°
° Parallel Decomposition:

• Each evaluation and each partial sum is a task.

° Assign n/p numbers to each of p procs
• Each computes independent “private” results and partial sum.

• One (or all) collects the p partial sums and computes the global
sum.

Two Classes of Data:

° Logically Shared
• The original n numbers, the global sum.

° Logically Private
• The individual function evaluations.

• What about the individual partial sums?

f A i
i

n

([])
=

−

∑
0

1

CS267 L3 Programming Models.8

Programming Model 1: Shared Address Space

° Program consists of a collection of threads of control.

° Each has a set of private variables, e.g. local variables on the stack.

° Collectively with a set of shared variables, e.g., static variables,
shared common blocks, global heap.

° Threads communicate implicitly by writing and reading shared
variables.

° Threads coordinate explicitly by synchronization operations on
shared variables -- writing and reading flags, locks or semaphores.

° Like concurrent programming on a uniprocessor.

i
res
s

PPP

i
res
s

. . .

x = ...
y = ..x ...

Address:

Shared

Private

CS267 L3 Programming Models.9

Machine Model 1: Shared Memory Multiprocessor

P1 P2 Pn

network

$ $ $

memory

° Processors all connected to a large shared memory.

° “Local” memory is not (usually) part of the hardware.
• Sun, DEC, Intel SMPs in Millennium, SGI Origin

° Cost: much cheaper to access data in cache than in main
memory.

° Machine model 1a: Shared Address Space Machine (Cray T3E)
• Replace caches by local memories (in abstract machine model).

• This affects the cost model -- repeatedly accessed data should be
copied to local memory.

CS267 L3 Programming Models.10

Shared Memory Code for Computing a Sum

Thread 1

 [s = 0 initially]
 local_s1= 0
 for i = 0, n/2-1
 local_s1 = local_s1 + f(A[i])
 s = s + local_s1

Thread 2

 [s = 0 initially]
 local_s2 = 0
 for i = n/2, n-1
 local_s2= local_s2 + f(A[i])
 s = s +local_s2

What could go wrong?

CS267 L3 Programming Models.11

Pitfall and Solution via Synchronization

° Pitfall in computing a global sum s = local_s1 + local_s2:

Thread 1 (initially s=0)
 load s [from mem to reg]

 s = s+local_s1 [=local_s1, in reg]
 store s [from reg to mem]

Time

Thread 2 (initially s=0)

 load s [from mem to reg; initially 0]
 s = s+local_s2 [=local_s2, in reg]
 store s [from reg to mem]

° Instructions from different threads can be interleaved arbitrarily.
° What can final result s stored in memory be?
° Problem: race condition.
° Possible solution: mutual exclusion with locks

Thread 1
 lock
 load s
 s = s+local_s1
 store s
 unlock

Thread 2
 lock
 load s
 s = s+local_s2
 store s
 unlock

° Locks must be atomic (execute completely without interruption).

CS267 L3 Programming Models.12

Programming Model 2: Message Passing

° Program consists of a collection of named processes.

° Thread of control plus local address space -- NO shared data.

° Local variables, static variables, common blocks, heap.

° Processes communicate by explicit data transfers -- matching send
and receive pair by source and destination processors.

° Coordination is implicit in every communication event.

° Logically shared data is partitioned over local processes.

° Like distributed programming -- program with MPI, PVM.

PPP

i
res
s

. . .
i
res
s

send P0,X

recv Pn,Y

XY
A: A:

n0

CS267 L3 Programming Models.13

Machine Model 2: Distributed Memory

° Cray T3E (too!), IBM SP2, NOW, Millennium.

° Each processor is connected to its own memory and
cache but cannot directly access another
processor’s memory.

° Each “node” has a network interface (NI) for all
communication and synchronization.

interconnect

P1

memory

NI P2

memory

NI Pn

memory

NI

. . .

CS267 L3 Programming Models.14

Computing s = x(1)+x(2) on each processor

Processor 1
 send xlocal, proc2
 [xlocal = x(1)]
 receive xremote, proc2
 s = xlocal + xremote

Processor 2
 receive xremote, proc1
 send xlocal, proc1
 [xlocal = x(2)]
 s = xlocal + xremote

° First possible solution:

° Second possible solution -- what could go wrong?

Processor 1
 send xlocal, proc2
 [xlocal = x(1)]
 receive xremote, proc2
 s = xlocal + xremote

Processor 2
 send xlocal, proc1
 [xlocal = x(2)]
 receive xremote, proc1
 s = xlocal + xremote

° What if send/receive acts like the telephone system? The post office?

CS267 L3 Programming Models.15

Programming Model 3: Data Parallel

° Single sequential thread of control consisting of parallel operations.

° Parallel operations applied to all (or a defined subset) of a data
structure.

° Communication is implicit in parallel operators and “shifted” data
structures.

° Elegant and easy to understand and reason about.

° Like marching in a regiment.

° Used by Matlab.

° Drawback: not all problems fit this model.

A:

fA:
f

sum

A = array of all data
fA = f(A)
s = sum(fA)

s:

CS267 L3 Programming Models.16

Machine Model 3: SIMD System

° A large number of (usually) small processors.

° A single “control processor” issues each instruction.

° Each processor executes the same instruction.

° Some processors may be turned off on some instructions.

° Machines are not popular (CM2), but programming model is.

interconnect

P1

memory

NI P2

memory

NI Pn

memory

NI

. . .

• Implemented by mapping n-fold parallelism to p processors.

• Mostly done in the compilers (HPF = High Performance Fortran).

control processor

CS267 L3 Programming Models.17

Machine Model 4: Clusters of SMPs

° Since small shared memory machines (SMPs) are
the fastest commodity machine, why not build a
larger machine by connecting many of them with a
network?

° CLUMP = Cluster of SMPs.

° Shared memory within one SMP, but message
passing outside of an SMP.

° Millennium, ASCI Red (Intel), ...

° Two programming models:
• Treat machine as “flat”, always use message passing, even within

SMP (simple, but ignores an important part of memory hierarchy).

• Expose two layers: shared memory and message passing
(usually higher performance, but ugly to program).

CS267 L3 Programming Models.18

Programming Model 5: Bulk Synchronous

° Used within the message passing or shared memory
models as a programming convention.

° Phases are separated by global barriers:
• Compute phases: all operate on local data (in distributed memory)

or read access to global data (in shared memory).

• Communication phases: all participate in rearrangement or
reduction of global data.

° Generally all doing the “same thing” in a phase:
• all do f, but may all do different things within f.

° Features the simplicity of data parallelism, but
without the restrictions of a strict data parallel
model.

CS267 L3 Programming Models.19

Summary So Far

° Historically, each parallel machine was unique,
along with its programming model and programming
language.

° It was necessary to through away software and start
over with each new kind of machine - ugh.

° Now we distinguish the programming model from
the underlying machine, so we can write portably
correct codes that run on many machines.

• MPI now the most portable option, but can be tedious.

° Writing portably fast code requires tuning for the
architecture.

• Algorithm design challenge is to make this process easy.

• Example: picking a blocksize, not rewriting whole algorithm.

CS267 L3 Programming Models.20

Steps in Writing
Parallel Programs

CS267 L3 Programming Models.21

Creating a Parallel Program

° Identify work that can be done in parallel.

° Partition work and perhaps data among logical
processes (threads).

° Manage the data access, communication,
synchronization.

° Goal: maximize speedup due to parallelism

Speedupprob(P procs) = Time to solve prob with “best” sequential solution
Time to solve prob in parallel on P processors

 <= P (Brent’s Theorem)
Efficiency(P) = Speedup(P) / P
 <= 1

° Key question is when you can solve each piece:
• statically, if information is known in advance.
• dynamically, otherwise.

CS267 L3 Programming Models.22

Steps in the Process

° Task: arbitrarily defined piece of work that forms the
basic unit of concurrency.

° Process/Thread: abstract entity that performs tasks:
• tasks are assigned to threads via an assignment mechanism.

• threads must coordinate to accomplish their collective tasks.

° Processor: physical entity that executes a thread.

Overall
Computation

D
ec

om
po

si
ti

on

Grains
of Work

A
ss

ig
nm

en
t

Processes/
Threads

O
rc

he
st

ra
ti

on

Processes/
Threads

M
ap

pi
ng

Processors

CS267 L3 Programming Models.23

Decomposition

° Break the overall computation into individual grains
of work (tasks).

• Identify concurrency and decide at what level to exploit it.

• Concurrency may be statically identifiable or may vary
dynamically.

• It may depend only on problem size, or it may depend on the
particular input data.

° Goal: identify enough tasks to keep the target range
of processors busy, but not too many.

• Establishes upper limit on number of useful processors (i.e.,
scaling).

° Tradeoff: sufficient concurrency vs. task control
overhead.

CS267 L3 Programming Models.24

Assignment

° Determine mechanism to divide work among threads
• Functional partitioning:

- Assign logically distinct aspects of work to different thread,
e.g. pipelining.

• Structural mechanisms:

- Assign iterations of “parallel loop” according to a simple rule,
e.g. proc j gets iterates j*n/p through (j+1)*n/p-1.

- Throw tasks in a bowl (task queue) and let threads feed.

• Data/domain decomposition:

- Data describing the problem has a natural decomposition.

- Break up the data and assign work associated with regions,
e.g. parts of physical system being simulated.

° Goals:
• Balance the workload to keep everyone busy (all the time).

• Allow efficient orchestration.

CS267 L3 Programming Models.25

Orchestration

° Provide a means of
• Naming and accessing shared data.

• Communication and coordination among threads of control.

Goals:
• Correctness of parallel solution -- respect the inherent dependencies

within the algorithm.

• Avoid serialization.

• Reduce cost of communication, synchronization, and management.

• Preserve locality of data reference.

CS267 L3 Programming Models.26

Mapping

° Binding processes to physical processors.

° Time to reach processor across network does not
depend on which processor (roughly).

• lots of old literature on “network topology”, no longer so important.

° Basic issue is how many remote accesses.

Proc

Cache

Memory

Proc

 Cache

Memory

Network

fast

slow
really
slow

CS267 L3 Programming Models.27

Example

° s = f(A[1]) + … + f(A[n])f(A[1]) + … + f(A[n])

°° DecompositionDecomposition
•• computing each f(A[j])computing each f(A[j])

•• n-fold parallelism, where n may be >> pn-fold parallelism, where n may be >> p

•• computing sum scomputing sum s

°° AssignmentAssignment
•• thread k sums thread k sums sksk = f(A[k*n/p]) + … + f(A[(k+1)*n/p-1]) = f(A[k*n/p]) + … + f(A[(k+1)*n/p-1])

•• thread 1 sums s = s1+ … +thread 1 sums s = s1+ … + sp sp (for simplicity of this example)(for simplicity of this example)

•• thread 1 communicates s to other threadsthread 1 communicates s to other threads

°° OrchestrationOrchestration
• starting up threads

• communicating, synchronizing with thread 1

° Mapping
• processor j runs thread j

CS267 L3 Programming Models.28

Administrative Issues

° Assignment 2 will be on the home page later today
• Matrix Multiply contest.

• Find a partner (outside of your own department).

• Due in 2 weeks.

° Reading assignment
• www.nersc.gov/~dhbailey/cs267/Lectures/Lect04.html

• Optional:

- Chapter 1 of Culler/Singh book

- Chapters 1 and 2 of www.mcs.anl.gov/dbpp

CS267 L3 Programming Models.29

Cost Modeling
and

 Performance
Tradeoffs

CS267 L3 Programming Models.30

Identifying enough Concurrency

° Amdahl’s law
• let s be the fraction of total work done sequentially

Simple Decomposition:
 f (A[i]) is the parallel task

 sum is sequential

C
on

cu
rr

en
cy

Time

1 x time(sum(n))

Speedup P
s

s

P
s

() ≤
+

− ≤
1
1

1

C
on

cu
rr

en
cy

p x n/p x time(f)
0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

Processors

S
P

ee
d

u
p

S=0%

S=1%

S=5%

S=10%

n x time(f)
° Parallelism profile

• area is total work done

After mapping

n

p

CS267 L3 Programming Models.31

Algorithmic Trade-offs

° Parallelize partial sum of the f’s
• what fraction of the computation is “sequential”

• What does this do for communication? locality?

• What if you sum what you “own”

° Parallelize the final summation (tree sum)

• Generalize Amdahl’s law for arbitrary “ideal” parallelism profile

C
on

cu
rr

en
cy

p x n/p x time(f)

p x time(sum(n/p))

1 x time(sum(p))

C
on

cu
rr

en
cy

p x n/p x time(f)

p x time(sum(n/p))

1 x time(sum(log_2 p))

CS267 L3 Programming Models.32

Problem Size is Critical

° Suppose Total work= n + P

° Serial work: P

° Parallel work: n

° s = serial fraction

 = P/ (n+P)

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

Processors
S

p
ee

d
u

p 1000

10000

1000000

Amdahl’s Law Bounds

In general, seek to exploit a large fraction of the peak parallelism
in the problem.

n

CS267 L3 Programming Models.33

Load Balancing Issues

° Insufficient concurrency will appear as load imbalance.

° Use of coarser grain tends to increase load imbalance.

° Poor assignment of tasks can cause load imbalance.

° Synchronization waits are instantaneous load imbalance

C
on

cu
rr

en
cy

Idle Time if n does not divide by P

Idle Time due
to serialization

Speedup P
Work

Work p idle
()

()

max (())
≤

+
1

p

CS267 L3 Programming Models.34

Extra Work

° There is always some amount of extra work to
manage parallelism -- e.g. deciding who is to do
what.

C
on

cu
rr

en
cy

Speedup P
Work

Work p idle extra
()

()

Max (())
≤

+ +
1

p

CS267 L3 Programming Models.35

Communication and Synchronization

° There are many ways to reduce communication
costs.

C
on

cu
rr

en
cy

Coordinating Action (synchronization)
requires communication

Getting data from where it is
produced to where it is used
does too.

Speedup P
Work

Work P idle extra comm
()

()

max(())
≤

+ + +
1

CS267 L3 Programming Models.36

Reducing Communication Costs

° Coordinating placement of work and data to
eliminate unnecessary communication.

° Replicating data.

° Redundant work.

° Performing required communication efficiently.
• e.g., transfer size, contention, machine specific optimizations

CS267 L3 Programming Models.37

The Tension

° Fine grain decomposition and
flexible assignment tends to
minimize load imbalance at the
cost of increased communication

• In many problems communication goes
like the surface-to-volume ratio

• Larger grain => larger transfers, fewer
synchronization events

° Simple static assignment reduces
extra work, but may yield load
imbalance

Speedup P
Work

Work P idle comm extraWork
()

()

max(())
≤

+ + +
1

Minimizing one tends to
increase the others

CS267 L3 Programming Models.38

The Good News

° The basic work component in the parallel program
may be more efficient than in the sequential case.

• Only a small fraction of the problem fits in cache.

• Need to chop problem up into pieces and concentrate on them to
get good cache performance.

• Similar to the parallel case.

• Indeed, the best sequential program may emulate the parallel one.

° Communication can be hidden behind computation.
• May lead to better algorithms for memory hierarchies.

° Parallel algorithms may lead to better serial ones.
• Parallel search may explore space more effectively.

